Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Int J Environ Res Public Health ; 19(18)2022 Sep 08.
Article in English | MEDLINE | ID: covidwho-2047304

ABSTRACT

This study introduces a principle that unifies two experimental methods for evaluating airborne indoor virus-transmissions adapted to several ventilation measures. A first-time comparison of mechanical/natural ventilation and air purification with regard to infection risks is enabled. Effortful computational fluid dynamics demand detailed boundary conditions for accurate calculations of indoor airflows, which are often unknown. Hence, a suitable, simple and generalized experimental set up for identifying the spatial and temporal infection risk for different ventilation measures is more qualified even with unknown boundary conditions. A trace gas method is suitable for mechanical and natural ventilation with outdoor air exchange. For an accurate assessment of air purifiers based on filtration, a surrogate particle method is appropriate. The release of a controlled rate of either trace gas or particles simulates an infectious person releasing virus material. Surrounding substance concentration measurements identify the neighborhood exposure. One key aspect of the study is to prove that the requirement of concordant results of both methods is fulfilled. This is the only way to ensure that the comparison of different ventilation measures described above is reliable. Two examples (a two-person office and a classroom) show how practical both methods are and how the principle is applicable for different types and sizes of rooms.


Subject(s)
Air Filters , Air Pollution, Indoor , Aerosols , Air Pollution, Indoor/analysis , Filtration , Humans , Ventilation
2.
Global Change Biology. Bioenergy ; 13(8):1260-1274, 2021.
Article in English | ProQuest Central | ID: covidwho-2019261

ABSTRACT

Tropical and subtropical acidic soils have been well documented as hotspots of global soil nitrogen (N) oxide (i.e., nitrous oxide (N2O) and nitric oxide (NO) emissions). While the effectiveness of possible mitigation options has been extensively examined in croplands, little is known about their effectiveness in reducing N‐oxide emissions from acidic soils of rapidly expanding tea plantations in China. Here, we conducted a 2‐year field experiment to investigate how organic substitution for synthetic fertilizer and biochar amendment affect soil N‐oxide emissions from a subtropical tea plantation. Across the 2‐year measurement period, full organic substitution for synthetic fertilizer significantly increased N2O emissions by an average of 17% while had a lower NO emission compared to synthetic fertilizer alone. Our global meta‐analysis further revealed that full or partial organic fertilizer substitution resulted in a 29% (95% confidence interval: 5%–60%) increase of N2O emissions from acidic soils. In contrast, irrespective of fertilizer type, biochar amendment significantly reduced N2O emissions by 14% in the first but not second experimental year, suggesting a transient effect. The trade‐off effect of full organic substitution on N2O and NO emissions may be attributed to the favorable conditions for N2O production due to the stimulated activity of nitrifiers and denitrifiers. The suppression of N2O emission following biochar amendment was probably due to promoted further reduction of N2O to dinitrogen. The fertilizer‐induced emission factor (EF) of N2O (2.1%) in the tea plantation was greater than the current IPCC default value, but the EF of NO (0.8%) was comparable to the global estimate. Taken together, while biochar amendment could have mitigation potential, cautions are needed when applying organic substitution for synthetic fertilizer as mitigation options for acidic soils as hotspots of N‐oxide emissions.

SELECTION OF CITATIONS
SEARCH DETAIL